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Entropic rigidity of randomly diluted two- and three-dimensional networks
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In recent work, we presented evidence that site-diluted triangular central-force networks, at finite tempera-
tures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation con-
centrationp. . This is in contrast to the zero-temperature case wheréetiergeti¢ shear modulus vanishes at
a concentration of particlgs,>p.. In the present paper we report on analogous simulations of bond-diluted
triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these
systems are rigid for ay>p, and that neap, the shear modulua~ (p—p.), where the exponerit=1.3 for
two-dimensional lattices ani=2 for the simple-cubic case. These results support the conjecture of de Gennes
that the diluted central-force network is in the same universality class as the random resistor network. We
present approximate renormalization group calculations that also lead to this conclusion.
[S1063-651%99)07109-3

PACS numbe(s): 82.20.Mj, 05.70.Fh, 64.60.Cn

[. INTRODUCTION with this prediction but certainly could not rule out a small
discrepancy. Moreover, for dimensionaldy=2, t~ v where

Since the pioneering work of Feng and S it has v is the percolation correlation length exponent so that the
become clear that, upon dilution @t=0, a network of par- data do not distinguish between the possibilitiesr and f
ticles interacting only through central two-body forces ge-=t. We note that this is in striking contrast to the zero-
nerically loses its ability to withstand shear at a concentratemperature result, where the exponent that describes the be-
tion p, of particles that is higher than the geometric havior of u nearp, is quite different fromt [8].
percolation concentratiop,, at which a spanning cluster first In this article we continue our investigation of diluted
appeary 2—4]. This phenomenon of rigidity percolation is central-force networks. We report on molecular dynamics
now quite well understood. However, recent woi6] has  simulations of site-diluted square lattices and bond-diluted
shown that forT#0 there is a contribution to the shear triangular lattices. The choice of these two systems was mo-
modulus that is entropic in origin and which persistspto tivated by a desire to reduce crossover effects. On the trian-
=p.. Conceptually this result is easy to understand by analgular lattice, rigidity percolation occurs fqr,~0.6975(site
ogy with the physics of rubber elasticity — another primarily dilution) and p,~0.66 (bond dilution whereas geometric
entropic phenomenon: Near percolation, diluted lattices argercolation occurs ap,=0.5 (site) and p.=2 sinz/18
composed essentially of long chains of singly connected par=0.3473(bond. The range of concentration over which ri-
ticles linked to each other at various junction points. Thesegidity is entropic is therefore much greater for bond dilution
chains are the direct analog of the polymer chains that arthan for site dilution and one might expect that the data
crosslinked in rubber to create a rigid amorphous materialwould be less influenced by the proximity of the rigidity
When the distance between junction points or crosslinks igercolation critical point. This effect is even more pro-
changed upon deformation of the sample, the entropy is ggrounced on the square lattice: The energy of a square net-
nerically decreased, resulting in an increase of free energyork is unchanged by an infinitesimal simple shear, pe.,
and a restoring force. As soon as a sample percolates, there=sl.0. Therefore, over the entire range of concentrations 1
a net shear restoring force. The connecting chain of particles p>p.~0.592 77[9] a nonzero shear modulus is due to
acts as a stretched spring. entropy.

Although this picture seems quite straightforward, there Since these systems are two dimensional, they also have
are a number of interesting open questions about entropithe propertyt~» and therefore the present simulations are
elasticity. The first has a long history, dating back to theagain unable to distinguish between the aforementioned po-
work of de Genne§7]. He argued, on the basis of a simple tential exponent equalitieb= v and f=t. Partly because of
analogy between Kirchhoff's laws for resistor networks andthis ambiguity, we have also carried out molecular dynamics
the force balance conditions for networks of springs, that théMD) simulations for diluted simple-cubic lattices. In three
random resistor networks and diluted networks of springslimensionsy~0.879[10] whereag~2.0[11]. Therefore, it
should be in the same universality class. More precisely, iEhould be possible to rule out one of the aforementioned
the conductivityo of a diluted network of resistors vanishes exponent equalities. As well, the simple-cubic lattice shares
at the geometric percolation point as-(p—p.)' and the with the square lattice the property,=1.0 and there is
shear modulus of a central-force netwqrk-(p—p.)' then  therefore a considerable range of concentrations=p.0
the prediction isf =t. Our earlier result§5] were consistent >p.~0.31 over which rigidity is entropic in origin.
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Since simulations of relatively small systems are inca- 1
pable of producing unambiguous conclusions on issues such i
as universality classes, we have also carried out renormaliza- 0.8 pere
tion group calculations on a number of regular fractals. [
These structures are designed to model the geometry of the 0.6

backbone of the percolating cluster nggar{12-14. All of

these calculations support the conclusfont. 0.4+

The structure of this article is as follows. In Sec. Il we 02_2_
describe the models and computational procedures. Results Tl
of the simulations are presented in Sec. Il and a description 0L . g

of the renormalization group calculations follows in Sec. IV. 0.5
Several experiments done on disordered materials are dis-
cussed in Sec. V. We conclude with a brief discussion and
outlook for future work in Sec. VI.

FIG. 1. Probabilityf ,.,{ p) that the largest cluster percolates in
both directions on site-diluted square lattices as a function of occu-
pation probabilityp. The lines are a guide to the eye. The three

Il. MODEL AND COMPUTATIONAL METHODS curves intersect very close to the percolation probability
. . . =0.5927 ....
The three systems simulated consist of particles tethered
to each other through the potential energy conditions were used throughout and as an initial condition,
1 all particles were affinely displaced from their equilibrium
V(rij):_k[|ri_rj|_r0]21 (2.1) positions. The bulk of these constant energy simulations
2 were carried out for mean temperatures of both

_ _ o =0.00%r3/kg andT=0.00%kr2/ kg for pL? particles withL
where, in the undiluted case=1, the verticesi, j label  ranging from 16 to 128 ang in the entropic regime 0.66
nearest neighbor sites on a square, triangular, or S|mp|e>p>o_3473_ For a givemp, the fluctuations from sample to
cubic lattice with equilibrium spacing ofo. In the site-  sample of the shear modulus are very substantial and it
diluted system at concentratignonly the remaining nearest proved necessary to average over many realizations to obtain
neighbor pairs interact with potential ener®:1); bond di- well-converged results. For the smallet=16) samples,
lution implies setting a fraction of the nearest neighbor inter-ynq the lowesp, 60 realizations averaged over both positive
actions to zero. Since only nearest neighbors interact, anghq negative shears were used, while for the larger samples
there are no hard core repulsions, these modeldiarthe  5¢ highp, as few as ten realizations were required.
two-dimensiqnal cagephantom rather than.self-avoiding Since systems with the symmetry of the square or simple-
membranes in the language used to describe tethered megpic Jattice are not isotropic solids, the elastic constant gov-
branes[15]. The implication is that, even with only two de- eming the pure shear deformation used above is not the shear
grees of freedom per particle, these systems would crumplg,odulus — the symmetry of a square does not require these
in order_ to increase their configurational_entropy if the gjastic constants to be equal. For these systems, we have
boundaries of the nets were not fixgtb]. This is relevant jnstead imposed a simple shear deformation by shifting the
because it implies that even an undiluted square net, Wit ndaries of the computational box Ry (Y)= ey,

every particle at its ground state position, is effectively underxma)(y): ey+Lr, where the undeformed box is a square of
entropic tension whem#0. It is well known that square size LroX Lr, or cube of volume [(ry)3. In this case, the

lattices under tensioat T=0) have a nonzero shear modu- shear modulus is given by
lus [17] whereas at zero tension they are soft. Thus it is not
surprising that our finite-temperature simulations yield a [Pxy(€) —Pyy(0)]
nontrivial shear modulus for both diluted and undiluted = '
square lattices.

To obtain the shear modulus, we have carried out molecuwherep,, is the off-diagonal element of the pressure tensor.
lar dynamics simulations for both systems. For the triangulatn this equation, we have subtracted,(0), which repre-
networks, we imposed a pure shear deformatign-(1  sents the frozen stresses for a given realization of the disor-
+e€)Ly, Ly—(1-¢)L, on the computational box. This der. Clearly, this quantity is zero by symmetry fo=1 and
transformation preserves the area of the cell to first order in should average to zero even for diluted lattices. However, for
and within linear elasticity theory for isotropic materials, the a finite number of samples, convergence is much more rapid
shear modulus is given by if these frozen stresses are subtracted sample by sample. For

these systems, we carried out Brownian NIC8], primarily

. (2.3

_ Pxx— Pyy at a temperatureT=0.0kr3/ks with a time step 6t
n=—— (2.2 _ . A
de =0.016yk/m and a deformation parameter=0.05 which is

still in the linear regime. For the square lattice, the samples
Here p,, and p,, are the diagonal elements of the pressureranged in size fromL =16 to L=128 and concentrations
tensor which are easily calculated in a MD simulation usingfrom p=1 to p=0.595. For the simple-cubic lattice, we
the virial theorem. In practice, we have taken both positivewere able to simulate systems of size B<32 for concen-
and negative values=*0.005 for each sample and aver- trations 0.315p=<1.0. In the next section, we describe the
aged the results over both simulations. Periodic boundaryesults obtained.
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FIG. 2. Probability that the largest cluster percolates in all three F!G- 4- Shear<modulus as a functionfor site-diluted square
directions on site-diluted cubic lattices. We estimate tpat 'atices and 161 <128.
~0.310.
As mentioned in the Introduction, the shear modulus of
It is interesting to note that if the shear modulus is entirelyt""o'd'”“:"ns'onalf randomly diluted networks behaves as
of entropic origin, as we expect it to be in the square lattice*(P;T)~(P—Pc)' with f~1.3, a value that is close to both
following the arguments given at the beginning of this sec-* (4/3) and the conductivity exponent1.3). A rough esti-
tion, thenw=p,.. Within computational error, we have ob- mate of the exponeritin three dimensions ca}n be obtained
served this to be the case fgr close to the percolation DY fitting the raw data to the form=a(p—p.)’ with a and
threshold. f fitting parameters. For the simple-cubic lattice, we take
=0.31, the value obtained from the intersection of the curves
in Fig. 2. This type of fit yields estimates of the exponént
Ill. RESULTS =2.0+0.2 when the data fdr = 16 andL = 32 are used. The

For systems of the size that we are able to simulate, finiteS0lid line in Fig. 5 is a plot of p—pc)? and itis clear that the
size effects are quite important. This is illustrated in Figs. 1data are consistent with this functional form.
and 2 where we have plotted the probability,{p) that a For the case of thg _two—_dlmen3|_onal Iattlce_s, it is neces-
spanning cluster exists as a function of the site occupatiof@y 0 carry out a finite-size scaling analysis to obtain a
probability for square and simple-cubic lattices. In the ther_reaspnably accurate estimate of the exponents. The finite-size
modynamic limit, this function is a step functiofye.{ p) scaling ansatz reads
=6(p—p.) and its departure from that form is an indicator
of the extent of finite-size effects. w(p,L)=L"""®L/&(p))=L"""D(L(p—po)?),

In Fig. 3 we show the raw data for the shear modulus as a (3.
function of p for the bond-diluted triangular lattice, and in
Figs. 4 and 5 we show the same data for site-diluted squaighere the scaling functio®(x)~x"” for x>1 and ®(x)
and simple-cubic lattices. The finite-size effects are clearly, const asx—0. In this expressionp, is taken to be the
evident, especially fop~p.. The reader might wonder percolation concentration of the infinite system. If this ansatz
Whether,u(p,LHOO)—)o. As in the case of the site-diluted holds, a p|ot Oﬂ—f/V/'L as a function oﬂ_(p—pc)V should
triangular lattice[5], the data when plotted as a function of produce a collapse of the data for different valuet.oSuch
L' clearly show a finite intercept at~*=0 for all p  plots are shown in Figs. 6—8 for the three systems investi-
>Pc- gated here. In all three cases we obtain a very respectable

collapse of the data. Although all three data sets have con-

10 siderable error bars associated with the estimatgs tifere

a2 1=16 R are no clearly discernible trends and we conclude that in the
oL=32 A thermodynamic limitu~ (p—p.)" with f~1.33 in two di-
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FIG. 3. Shear modulus as a function pfor bond-diluted tri-
angular lattices and E6L <128. The simulations for this data were FIG. 5. Shear modulus as a functionpfor site-diluted simple-
done at a mean temperature of O.OOEkré/kB. cubic lattices and &L <32.
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FIG. 8. Finite-size scaling plot for the simple-cubic lattice with
p.=0.31,»=0.879, andf =2.0. The solid line shows the expected

asymptotic form of the scaling function.
FIG. 6. Finite-size scaling plot of the data of Fig. 3. Here we

have usedv=4/3, p.=0.347 30, and =v. IV. RENORMALIZATION GROUP

. , , , . There have been a number of approximate renormaliza-
mensions and~2.0 in three dimensions. The deviation of (i, group (RG) calculations for random resistor networks
the data for. =16 in Fig. 6 from a straight line at highis  near the percolation point. Early work by Stinchcombe and
due_to the crossover to the en_erg_etlcally rigid region, Whlcrwatson[lg] and Bernascon20] was based on real space
begins atp,~0.66. The last point in thé =16 data corre- RG transformations for small finite clusters. These ap-
sponds top=0.65, almost at the critical point, and some proaches produced two recursion relations, one for the prob-
realizations of the diluted lattice have significant rigid re- ability p that a renormalized bond would be occupied and
gions at lowerp, resulting in the increase in shear modulus yne for the distribution of conductivitieB(a). Thus, one
observed. There is no energetically rigid region in either th§piains both the correlation length exponenand the con-
square or simple-cubic lattice, so this eff_ect_ d_ogs not appeagciivity exponentt, both to respectable accurado).

To remove the effects of the energetic rigidity in the tri- | yier 3 different approach was developed based on the idea
angular Ia}ttlcg, we plo_t t_he gntropm contribution to the sheagnat the geometry of the system at percolation can be mod-
modulus in Fig. 9. This is given by] eled quite accurately by a regular fractal, such as a Sierpinski

gasket[12], modified Koch curvg13], or other hierarchical
m lattices[14]. Since these hierar_chical .Iattices are expected. to
,U«s=T(ﬁ> (3.2 be relevant only at the percolation point, there is no recursion
p.L relation for the probabilityp and generically only a linear
relation betweew’ ando. Using the value of thépresumed
The higherp values of theL = 16 data now fall closer to the known) correlation length exponemt, one can then ca_lculate
other data, as expected. the exponentt_. In d=2, one obtains a .best estimate

Our data are therefore consistent with the conjecture of d& 1-322 [14], in very good agreement with Monte Carlo
Genneg7] that the random resistor network and the dilutedSimulations. , ,
central-force network are in the same universality class — a If one replaces the resistors on the network with a set of
marked contrast to the behavior of the zero-temperature riaussiansprings, i.e., springs with Hamiltonian
gidity near the rigidity percolation point. In the next section

. . : ; H(i,j)=BH=K{r,—r}? 4.1
we provide further evidence for this conclusion by construct- (.))=8 {ri=r} @
ing a renormalization group transformation for two- 1o
dimensional networks. 21216 ‘ ' °
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FIG. 7. Finite-size scaling plot of the data of Fig. 4. Here we  FIG. 9. Finite-size scaling plot of the entropic contribution to
have usedv=4/3, p.,=0.592 77, and = v. The solid line is a plot the shear modulus of a bond-diluted triangular lattice, in arbitrary
of [(p—pe)L]"" for L=32. units.



PRE 60 ENTROPIC RIGIDITY OF RANDOMLY DILUTED TWG-. .. 3133

1 1 1 1 1
Wir4) Wolri2 Wty )
4 3 4 3 " = Wiry4)
Walr,12)
4 4
FIG. 12. Multiply connected cluster used in the real space renor-
12 12 12 malization group calculation of Ref20].

FIG. 10. Three generations of the hierarchical lattic¢lef]. i . .
the conjecture that a general central-force potential, on this

between any pair of sites connected by a resistor, one Ca{p{era_rchit_:al lattice, under renormalization_ it_er_ates toward the
produce a renormalized value @istribution fon K by inte- Ha_mlltonlan (4.1 and therefqre that the r|g|d|ty_ probler_n at
grating out some of the’s. This recursion relation is exactly finite T and the random resistor problem are indeed in the
the same as the recursion relation for the conductivities, i.eSame universality class. The same results are obtained for the
we arrive at de Gennes’s conclusipf by a different route.  other regular fractals mentioned above.
However, the technical flaw in de Gennes’s argument is that It is interesting to carry out a similar calculation for clus-
it breaks down for arbitrary central-force fields. For a generaters that are more characteristic of diluted lattieb®vethe
potential energy/(r;;), including Eq.(2.1), the equations of rigidity percolation point. In Fig. 12 we show one of the
motion do not separate and the formal equivalence betwednond configurations that occurs in the real space RG calcu-
Kirchhoff's laws and mechanical equilibrium is lost. lation of Ref.[20]. Integrating out the coordinates andr
Because of this difficulty, we have examined how thein W,, we obtain the renormalized Boltzmann weight
non-Gaussian Hamiltonia(2.1) varies under renormaliza- W, (r,,). This is shown in Fig. 13 together witWy(r) for
tion for some of the regular fractals mentioned above. Herg —k/2k,T=5.0. What is notable is the appearance of a sec-
We.repo.rt results only fpr thg hierarchical Iatticg of Rd#| ondary peak at,=\3r,. The two peaks are due to the fact
which is sketched in Fig. 10. We definéVo(ri})  that the set of springs with the topology shown has two pos-
= exp{—Ho(rj;)} where sible configurations with all lengths equal. The first, shown
in Fig. 12, has vertices 1 and 4 separated,By,. However,
the configuration in which vertex 4 is on top of vertex 1 also
- . has all spring lengths equal. The peak gt 0 is due to this
where we t.akeozl aquzl and wh_ere,J are any pair of configurgtior?. As‘gll' is Io?/vered orl? incr?;sed, the second
nearest neighbor vertices on the highest generation of thﬁeak becomes more pronounced, and at zero temperature
hierarchical lattice. Integrating over, rs, and the other nqins the entire Boltzmann weight: The phase space for

coordinates at the ends of the smallest loops in the higheghe nronlem separates into two regions corresponding to the
generation produces the next highest generation with a Bolts, configurations of the set of springs, and if the system

zmann weightV, = exp{—,} describing the interaction be- gyas in the extended configuration, it must remain in it. Our
tween the remaining particles. This procedure can clearly bgernretation is that at zero temperature, fiofp, , the flow
continued indefinitely. However, as is evident from Fig. 11, a RG transformation is towarl=1 where structures such

one step is sufficient. In this figure, we show the results of 8,5 4 of Fig. 12 dominate. At the same time, the character-
single such numerical integration. Plotted together Withigiic 1engthr, which represents the ground state lattice con-

Wo(r) is Wy(r), normaliz.ed to unity at .=.0._The stiking  seant flows towardr, whereb is the change in length scale
feature of these curves is that the equilibrium length scalgy .« 5 the RG transformatidi21].

ro=1 of the starting Hamiltonian has completely disap-
peared: The solid curve is a fit of the functidn, to a Gauss-
ian peaked at=0. The fit is essentially perfect, leading to

Ho(rij)=BV(rij)=K[|ri—rj|—rol? (4.2

1 *

0.8+
0.6

W(r)
0.4

0.2

FIG. 13. Original Boltzmann weightV, and renormalized
FIG. 11. One step in the renormalization of the Hamiltoritn weight W, for the transformation of Fig. 9.
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V. EXPERIMENTS VI. DISCUSSION

A number of experiments have been done to measure the In this article we have presented compelling evidence that
elastic moduli of different amorphous solids, with varying at nonzero temperature the shear modyarsd presumably
results. All of these experiments are done with three-other modul) of diluted central-force networks remain finite
dimensional samples and therefore the prediction that théor all concentrations above the geometric percolation con-
exponentf~2.0 is what is being tested. centration. This is true even for energetically soft lattices

The best agreement with the predictions discussed here @ich as the square and simple-cubic lattices for which the
found in an experiment done on a gel formed from tetra-igidity percolation concentration ig=1. Strictly speaking,
ethoxysilang TEOS in a solution of water and ethan®2]. rigidity percolation is therefore @a=0 effect although con-
These authors founfi=2.0=0.1, as well as other exponents siderable softening of the elastic constants ngadoes oc-
reasonably close to those of conductivity percolation. Theseur at finite temperature.
exponents were found only close to the gelation point; far We have also presented evidence that the critical behavior
from this point, a crossover to the vector elasticity exponent®f the moduli at the percolation point is the same as that of
was seen. In this experiment, the time from the gelation tranthe conductivity of a random resistor network of the same
sition was measured, amwas taken to be proportional to dimensionality, thus lending support to a conjecture of de
this time. This assumption is supported by another experiGenned7].
ment showing that the degree of condensation is proportional Central-force networks are somewhat special from an en-
to time near the gelation transitig23]. ergetic perspective since the inclusion of bond-bending

This good agreement is encouraging as the silica gel studerces reduces the rigidity percolation point to the geometric
ied is a soft material, where the entropic effects are likely topercolation point. The exponentthat characterizes the criti-
be important. Also, the gelation transition and the structuresal behavior of the elastic modulat T=0) of systems with
of the gel are reasonably well described by percolatiorbond-bending forces is also known to be significantly larger
theory. than that of random resistor networl&. However, at finite

Another experiment, done on a porous ceramic materialemperatures we expect that these systems will have the
[24], also found reasonable agreement with our predictionssame entropic contribution to the free energy as central-force
In this experiment, the conductivity and elastic exponents ofetworks. Since the exponehthat characterizes the behav-

a set of porous ceramics of lead zirconate-titanate preparddr of entropic elasticity is smaller thanwe conjecture that

by tape casting and sintering were determined. Since botbntropic effects will dominate and that the behavior found in
conductivity and elastic exponents were measured, the anake calculations presented here is in fact general and inde-
ogy between the two can be tested in the same material. Thgendent of microscopic detail. However, this remains a sub-
conductivity and Young’s modulus were measured as a fundgect for future investigation.

tion of the volume fractiorv, which is taken to correspond to
p in the percolation problem. The conductivity exponént
was found to be 2.270.25, and the elastic exponent wias
=2.2+0.2. The fact that the conductivity and elasticity ex- We thank P.M. Duxbury, Paul Goldbart, and M.F. Thorpe
ponents are similar is encouraging, as is the fact that theder helpful discussions. This research was supported by the
guantities vanish at the same critical volume fraction. NSERC of Canada.
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